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A B S T R A C T   

In Alzheimer's disease (AD) research, cerebrospinal fluid (CSF) Amyloid beta (Aβ), Tau and pTau are the most 
accepted and well validated biomarkers. Several methods and platforms exist to measure those biomarkers, 
leading to challenges in combining data across studies. Thus, there is a need to identify methods that harmonize 
and standardize these values. We used a Z-score based approach to harmonize CSF and amyloid imaging data 
from multiple cohorts and compared GWAS results using this approach with currently accepted methods. We also 
used a generalized mixture model to calculate the threshold for biomarker-positivity. 

Based on our findings, our normalization approach performed as well as meta-analysis and did not lead to any 
spurious results. In terms of dichotomization, cutoffs calculated with this approach were very similar to those 
reported previously. These findings show that the Z-score based harmonization approach can be applied to 
heterogeneous platforms and provides biomarker cut-offs consistent with the classical approaches without 
requiring any additional data.   

1. Introduction 

Alzheimer's disease (AD), a degenerative brain disease, is the most 
common form of dementia and is the sixth leading cause of death in 
United States (Gaugler et al., 2016). As the deaths due to other diseases 
such as stroke, heart diseases etc. continue to decrease, AD related death 
increased by 71% between 2000 and 2013 (Gaugler et al., 2016). Thus, 
the need for increased focus on understanding the disease and its pa
thology has become more evident than ever before. 

Research suggests AD related brain pathology begins decades prior to 
onset of clinical symptoms (Beason-Held et al., 2013). Although the 
diagnosis of AD is based on identification of amyloid plaque and tau 
tangle accumulation in brain post-mortem, early pathological changes 
can be tracked using closely related circulating protein biomarkers such 
as Amyloid (Aβ) and Tau particularly in cerebrospinal fluid (CSF) as well 
as radio tracers like 11C-labeled Pittsburgh compound B or F- florbetapir 
targeting plaque accumulation in brain using imaging techniques 

(Holtzman, 2011; Dayon et al., 2018; Suppiah et al., 2019). The use of 
these endophenotypes is becoming increasingly popular as early detec
tion of AD is of utmost importance given the fact that all current disease 
treatment modalities are focused on symptom management or disease 
progression (Yiannopoulou and Papageorgiou, 2020; Koseoglu, 2019). 

The close proximity of CSF to brain, with unrestricted protein flow 
between the two, and the comparative ease of access to it through 
lumbar puncture (LP) has made CSF an ideal choice for AD biomarkers 
among researchers (Niemantsverdriet et al., 2017). Besides the utiliza
tion of these proxy CSF biomarkers in AD diagnosis, they can also be 
used to monitor biological changes throughout the disease progression. 
Despite these advantages, CSF collection is more invasive when 
compared to other tissues such as plasma or blood, which has resulted in 
lower sample availability. This, in turn, has severely limited the ability 
of researchers to perform large-scale, statistically powerful analysis 
which could potentially reveal novel AD related pathways and/or 
biomarkers. 
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In addition to measuring these circulating protein levels, functional 
imaging techniques such as positron emission tomography (PET), used 
to identify amyloid plaque and tau accumulation in brain, are also 
routinely used as a complimentary practice for AD diagnosis (Suppiah 
et al., 2019; Marcus et al., 2014). This imaging-based approach allows 
the non-invasive detection of amyloid and tau aggregates in the brain, a 
core neuropathologic feature that characterizes AD. There is strong ev
idence from neuropathologic studies that the most widely used amyloid 
(i.e., 11C-labeled Pittsburgh compound B, 18F-florbetapir, and 18F-flu
temetamol) and Tau PET tracers (i.e., 18F-flortaucipir, 18F-MK6240, 18F- 
RO948, and 18F-PI2620) bind amyloid and tau aggregates, respectively, 
formed in AD in the more advanced pathologic state (i.e., Braak stage ≥
IV) (Fleisher et al., 2020; Klunk et al., 2004; Groot et al., 2022; Ville
magne et al., 2018). However, the use of different tracers also creates a 
problem of combining this data in single analysis. 

Since clinical diagnosis of AD is largely based on subjective mea
surement of cognitive function in patients, efforts have been made to 
develop a more objective and consistent scale for interpretation of 
biomarker findings. As a result of these efforts, Jack et al. (2016) pro
posed the ATN classification framework, which takes three AD bio
markers into account to categorize disease positivity or negativity. The 
“A” component of the classification describes the Aβ biomarker 
measured through CSF Aβ level or amyloid PET, “T” refers to Tau, either 
CSF Tau or Tau PET, and “N” refers to neurodegeneration (Jack et al., 
2016). Based on biomarker specific cutoffs, individuals are labeled as 
either biomarker positive or negative (A+/A-; T+/T-; N+/N-). These 
classifications are designed to have a consistent and clear format when 
interpreting results and communicating among clinicians and re
searchers rather than providing a diagnostic framework. 

To increase the quantity and depth of data availability, collaborative 
research in multiple centers has emerged as a norm to address issues 
caused by data fragmentation. However, lack of homogeneity in the data 
as a result of pre- and post- analytical factors like time in freezer, number 
and volume of aliquots, tube types among others, differences has 
become a glaring obstacle in any data sharing effort. Even when we 
consider previously described standardization efforts such as the ATN 
classification, the lack of consensus in universal biomarker cutoffs is a 
major caveat as biomarker levels, and subsequently their cutoffs for 
dichotomization, can be influenced by the technique of measurement. 
Thus, the need for standard retrospective data harmonization ap
proaches exists, particularly those that are focused on endophenotypes 
such as CSF biomarkers and amyloid imaging among others. In absence 
of such approaches, historical data collected prior to established pro
tocols remain unutilized for potential new discoveries due to the in
compatibility of merging such data with newer data collected under 
different standards. One of the special focuses on CSF biomarkers and 
amyloid imaging endophenotypes is because of their demonstrated 
utility in genetic studies (Cruchaga et al., 2013; Yan et al., 2021; Deming 
et al., 2017). Not only have these been used to identify risk variants and 
genes in context of AD but also in identification of previously unknown 
disease mechanism. Cruchaga et al. (2013) utilized CSF Tau and pTau in 
their genome wide association study (GWAS) to identify independent 
associations between these biomarkers and the APOE region. Similarly, 
by using CSF sTREM2 as endophenotype, Deming et al. (2019) were able 
to demonstrate the role of MS4A gene cluster in AD mechanism. These 
endophenotypes have also been used to identify sex specific AD risk 
variants (Deming et al., 2018). 

Current practice in terms of data harmonization is focused on re- 
running previously generated samples using one platform in order to 
be able to combine samples from different studies. Even with this 
approach, differences in sample collection can still lead to a technical 
variation or variation by factors other than the biological nature of the 
samples called batch effect, which can render the effort of re-running 
samples useless. In addition, this approach is not practical because of 
the financial and resource burden required to rerun the samples. Also, 
with the collection of new samples, the process will have to be repeated. 

Another approach that is used in genetic studies is meta-analysis, a 
statistical approach that combines data from multiple independent 
research geared towards the same underlying hypothesis. Doing so is not 
only tedious as each dataset has to be analyzed individually before it can 
be meta-analyzed but it also significantly diminishes the power to detect 
rare variants. As researchers are realizing the importance of conditional 
and stratified (by sex or disease status) analyses, instead of one size fits 
all models, these issues become even more cumbersome as they add 
several time and resource intensive layers to the process. Another major 
obstacle that we are seeing in data harmonization efforts is lack of 
consensus among researchers on one standard harmonization approach. 
As such, the issues that these approaches were designed to address i.e., 
ease of data sharing and use with consistent replication of results, is still 
persistent albeit to a lesser degree. 

The primary objective of our paper is to highlight a statistical 
approach (Z-scores) that could mitigate batch effects introduced by pre 
and post analytical variables post, thereby ensuring data quality and 
reliability. We particularly demonstrate this approach in context of CSF 
biomarker and amyloid imaging. Such approaches would not only help 
researchers in future collaboration efforts but also would allow the use 
of heterogenous data retrospectively. Increased availability of data is 
directly translated into statistically powerful genetic studies and better 
representation of samples, thus making stratified (such as by sex or 
ethnicity) analysis possible. Z-score has been used previously in genetic 
studies with great success but its application in data models outside the 
genetic study framework needs to be evaluated. In this paper, by 
comparing Z-scores with routinely used methods such as Meta-analysis 
and the ATN classification framework, we present evidence that Z- 
score based analysis does not lead to spurious results and this method 
has a potential to be an alternative to traditional approaches. We also 
demonstrate a data-driven approach to generate cutoffs for ATN classi
fication. Both methods are easy to follow, implement, and are scalable 
which makes them ideal to be used in collaborative research. However, 
it is important to address that we do not seek to make any recommen
dations that would have implication in routine clinical practice. 

2. Materials and methods 

2.1. Cohort and samples 

We obtained CSF biomarker levels for Aβ42, Tau and pTau from 23 
different cohorts, including from Alzheimer's Disease Neuroimaging 
Initiative (ADNI) and Knight Alzheimer's disease Research Center 
(Knight ADRC) among others, encompassing 16,066 total samples that 
included longitudinal datapoints. CSF measurements were obtained 
using different platforms such as Elecsys, Lumipulse, and Innotest across 
the cohorts (Supplementary Table 1). Similarly, amyloid imaging data 
measured using a variety of tracers were obtained for 7,557 samples 
(Supplementary Table 2). These subjects were recruited from ADNI, 
Knight-ADRC, Dominantly Inherited Alzheimer Network (DIAN), Anti- 
Amyloid Treatment in Asymptomatic Alzheimer's Disease (A4), ADNI 
Department of Defense (ADNIDOD), Australian Imaging, Biomarkers 
and Lifestyle (AIBL), The Harvard Aging Brain Study (HABS) and Uni
versity of Pittsburgh (UPitt) cohorts. Demographic details of the CSF 
samples and the amyloid imaging samples is presented in Supplemen
tary Table 1 and Supplementary Table 2 respectively. A subset of the 
samples was further used to perform GWAS and GMM based cut-off 
determination analysis. More information on cohorts included in this 
study has been provided as additional materials (Supplementary mate
rial 1). 

2.2. Data quality control and standardization 

We tested an approach that allows us to combine values from dis
similar cohorts without introducing any batch effect or spurious results. 
This method is based on the calculation of Z-scores, also known as 
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normal deviate or a standardized score. Z-score shows how many stan
dard deviations (SD) a biomarker value is away from the mean (M) of the 
dataset (Colan, 2013). Mathematically Z-scores are calculated as 

Z =
x − m

s  

where, x = observed biomarker value, m = sample mean and s = sample 
standard deviation. Z-scores can be calculated for each value in a dataset 
and are easy to interpret, as a positive score indicates a raw level above 
mean and a negative score indicates levels below mean with more 
extreme scores showing higher deviation from the average (Curtis et al., 
2016). 

Here, we implemented this approach using 23 cohorts with CSF 
Aβ42, Tau and pTau level and calculated their Z-scores (Supplementary 
Table 1). Prior to Z-score calculation, quality control (QC) was done to 
remove duplicated samples or samples with missing biomarker level. 
Raw protein values were log transformed followed by outlier removal. 
Outliers were defined using the Interquartile range (IQR) approach. Any 
biomarker level lower than Q1-1.5*IQR and higher than Q3 + 1.5*IQR, 
where Q1 and Q3 are the first and the third quartile calculated from the 
distribution, were marked as outlier data points and excluded from the 
analysis. Outlier detection and removal is a highly recommended step in 
biomarker-based analysis to exclude technical (e.g., ceiling values) and 
biological artifacts (e.g., cell lysis) within the dataset to produce robust 
findings. Z-scores were then calculated using base “scale” function in R 
statistical software (v3.5.0). The QC steps as well as Z-score calculation 
were performed for each cohort and each biomarker individually. To 
demonstrate that the applicability of this framework extends beyond 
harmonizing CSF specific data types, we employed the same Z-score 
based harmonization approach for processing amyloid imaging data 
from the eight different cohorts. Z-scores were calculated for each cohort 
and tracer similar to the CSF biomarker datasets as described earlier. 

2.3. Comparison against meta-analysis approach 

Z-score standardization approach has been previously used in several 
studies focused on identifying genetic variants associated with CSF and 
amyloid imaging (Cruchaga et al., 2013; Deming et al., 2017; Jansen 
et al., 2022; Deming et al., 2016; Raghavan et al., 2020; Ali et al., 2023). 
However, it is important to demonstrate that this standardization 
approach does not lead to spurious results. To address this, we per
formed a joint-GWAS using the CSF Aβ, Tau and pTau Z-scores from 23 
cohorts (N = 7231) as phenotype and compared the results with those 
obtained from meta-analyzing each individual cohort GWAS. In both of 
these analyses, we exclusively utilized cross-sectional samples. 
Furthermore, to avoid any potential inflation of GWAS results due to 
inadvertent duplication or familial relationships, we conducted Identity 
by Descent (IBD) analysis to detect and subsequently exclude such 
samples from the study. We performed GWAS exclusively with non- 
Hispanic white samples as determined by genetic PCA. In terms of 
analysis, we first used the Z-scores obtained from raw biomarker levels 
from all 23 cohorts, as described earlier, and performed a single variant 
association analysis for each biomarker, hereby referred to as joint 
analysis, with these scores as continuous endophenotypes using PLINK 
v2.0 (Chang et al., 2015). The analysis was adjusted for biological and 
technical covariates such as age, gender, and genotyping arrays. In 
parallel and as comparative analysis, each cohort was analyzed inde
pendently and the resulting summary statistics were meta analyzed 
using METAL (Willer et al., 2010), which would constitute the current 
state-of-the-art approach to combine GWAS result from different co
horts. The inverse variance weighted approach in METAL was used for 
meta-analysis. Finally, we analyzed the correlation between the effect 
sizes and p-values from both approaches to determine if both methods 
would lead to the same results. We implement the same approach for 
amyloid imaging where we first performed GWAS for eight individual 
cohorts followed by meta-analysis using METAL and compared the 

results with those obtained from GWAS using amyloid imaging data Z- 
scores as continuous trait. As in the case of CSF biomarker GWAS, 
unique and unrelated samples only, as identified by IBD, were included 
for analysis. To further demonstrate the validity of this approach, we 
asked if conducting an association study using harmonized vs raw 
endophenotype or log normalized biomarker levels would lead to 
similar results. We conducted two independent linear regression ana
lyses using amyloid-PET endophenotype as a harmonized (Z-score) and 
raw Centiloid (CL) scale, available from the Knight ADRC (N = 549) and 
ADNI (N = 1134) cohorts, and compared their results to check the 
concordance or lack thereof. We also compared the effect size and p- 
values from the joint analysis of the eight cohorts using Z-scores from 
amyloid imaging data as phenotype with the meta-analysis result of 
individual cohort GWAS summary statistics using log transformed 
biomarker values as phenotypes. 

2.4. Unbiased biomarker dichotomization and ATN classification 

We used a gaussian mixture model (GMM) to identify Z-score driven 
biomarker cut-offs for AT classification of CSF Aβ and pTau from ADNI 
and Knight ADRC cohorts that used different platforms to measure the 
protein levels. GMM is a probabilistic model approach based on the 
assumption that all data points within a population can be grouped 
under a finite number of gaussian distributions, thereby identifying 
subpopulation within them. GMM was implemented through the 
“mclust” package (V 6.0.0) in R statistical software. Within ADNI cohort, 
xMAP platform was utilized for CSF Aβ measurement and Elecsys plat
form was used for CSF pTau biomarker measurement. We also leveraged 
Innotest and Lumipulse data from the Knight ADRC cohort for the 
measurement of CSF Aβ and pTau levels, respectively. Z-score values for 
dichotomization were calculated using the same approach as described 
earlier. The platform-specific cutoffs were determined for each 
biomarker of interest and each cohort individually, as explained above. 
From the Z-score cutoff thus identified, the corresponding raw value 
cutoffs were inferred thereby providing a biologically meaningful 
biomarker level. We applied the same approach for dichotomizing the 
amyloid imaging data using different amyloid imaging tracers from 
ADNI and Knight ADRC. Finally, we assessed the performance of this 
method in comparison to more classical approaches of biomarker cut-off 
determination by comparing the agreement of biomarker status deter
mined by our approach within ADNI cohort to that assigned by using 
previously reported cut-offs for CSF biomarkers. In addition, we also 
compared the performance of our proposed method with other statistical 
approach employed for biomarker positivity determination by 
comparing the agreement between A/T label assigned by each approach 
in an external dataset. 

3. Results 

3.1. Z-scores transforms dissimilar biomarker levels to a uniform scale 

We utilized Z-scores to harmonize CSF Aβ, Tau and pTau biomarker 
levels from 23 different cohorts measured using various platforms 
(Supplementary Table 1). The distribution plot of absolute raw bio
markers level and their corresponding Z-scores for Alzheimer's Disease 
Neuroimaging Initiative (ADNI) and Knight Alzheimer's disease 
Research Center (Knight ADRC) shows that the dissimilar raw values are 
transformed into a uniform Z-score based scale ranging from -3 to 3 in 
both cohorts (Fig. 1A). This is because all biomarker values are stan
dardized with mean 0 and variance 1 regardless of the difference in 
range of absolute values. The ±3 limits are results of the QC steps we 
implemented to remove any outlier values prior to Z-score calculation. 
Similar harmonization and resulting plots were generated for the 
remaining 21 cohorts as well (Supplementary Fig. 1-3). This consensus 
in scales resulting from Z-score standardization allows the use of the 
biomarker data from dissimilar sources as one continuous measure. We 
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can also appreciate the fact that the bimodal nature of raw Aβ levels 
within ADNI cohort, which is an expected observation given the dif
ference between Aβ levels in cases and controls, has been preserved 
when using Z-score thereby highlighting the ability of Z-scores in 
capturing underlying biological patterns. 

To demonstrate the utility of this approach in more than one class of 
endophenotype, we applied Z-score harmonization approach to amyloid 
imaging data obtained for 7557 individuals from 8 different cohorts 
measured using various tracers (Supplementary Table 2). The stan
dardization approach appropriately overlaid all data sets onto a uniform 
scale with a mean of 0 and SD of ±3, as seen in the case of CSF biomarker 
data presented above, regardless of underlying difference in the tracers. 
Notably, the Z-score transformation preserved the underlying bimo
dality of the raw amyloid PET data (Fig. 1B), suggesting it to be equally 
favorable for further dichotomizing the harmonized quantitative endo
phenotype into amyloid-positive and negative populations. Altogether, 
these observations provide support to the potential utility of Z-scores as 
a powerful tool in terms of retrospective data harmonization needs. 

3.2. Z-score based analysis yields results comparable to meta-analysis 

To assess that the Z-score based data standardization does not lead to 
spurious results, we performed GWAS analysis with Z-scores derived 
using CSF biomarker data (N = 7231) from diverse platform and cohorts, 
as a continuous quantitative trait and compared the findings with meta- 
analysis of individual cohort GWAS. Both analyses were adjusted for 
appropriate covariates (Supplementary Fig. 4). We found significantly 
strong correlation between both the effect sizes (rAβ = 0.969, p < 1 × 10- 

300; rtau = 0.966, p < 1 × 10-300; rptau = 0.958, p < 1 × 10-300, Fig. 2B) 
and p-values between the two methods (rAβ = 0.957, p < 1 × 10-300; rtau 
= 0.938, p < 1 × 10-300; rptau = 0.925, p < 1 × 10-300,Supplementary 
Fig. 5) thereby highlighting the utility of Z-score based joint analysis as 
an alternative to meta-analysis. Next, we were also interested to know if 
there was overlap between sentinel variants in a locus identified by both 
these approaches. For this, we compared the signals that passed genome 
wide significance threshold in our joint analysis. We found that the lead 
variant remained consistent across all CSF biomarkers regardless of the 
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Fig. 1. Histogram showing the distribution of raw values and their corresponding Z-score for Aβ, Tau and pTau (A) and Amyloid PET centiloid values (B) in ADNI and 
Knight ADRC cohort. Red bins represent raw values and blue bins represent Z-scores The raw values have been assigned a Z-score based on the mean and SD from 
their distribution in each cohort and scaled to range between -3 to 3. The skewed nature of the raw values was addressed using an intermediate step involving log 
transformation prior to Z-score calculation. Alzheimer's Disease Neuroimaging Initiative (ADNI); Knight Alzheimer's disease Research Center (Knight ADRC). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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method used (Supplementary Table 3). 
To demonstrate the utility of this approach in diverse endopheno

types, we applied this harmonization technique to amyloid imaging data 
obtained for 7557 individuals from eight different cohorts (Supple
mentary Table 2) using different imaging tracers (e.g., AV45, FBP, and 
PiB). As expected, we observed a very high correlation between the p- 
values (r = 0.980; p < 1 × 10-300; Supplementary Fig. 6 A-6B) from the 
joint using amyloid imaging Z-scores as continuous quantitative trait 
and meta-analysis of individual cohort summary statistics. The strong 
agreement between joint and meta-analysis approaches highlights the 
ability of Z-score in data harmonization across different cohorts without 
producing any false-positive results and increasing the statistical power 
of the study. 

Further, we compared the results from the harmonized values-based 
analysis with both raw amyloid imaging (Centiloid) endophenotype- 
based GWAS in Knight ADRC (N = 549) and ADNI (N = 1134) cohort 
as well as from meta-analysis of all eight cohorts with log10 transformed 
biomarker levels as phenotypes. In our analysis comparing results from 
GWAS with harmonized scores and the raw phenotype, we observed a 
very strong positive correlation between the effect sizes (rKnight ADRC =

0.951, pKnight ADRC < 1 × 10-300; rADNI = 0.966, pADNI < 1 × 10-300) and 
their corresponding p-values (rKnight ADRC = 0.889, pKnight ADRC < 1 × 10- 

300; rADNI = 0.923, pADNI < 1 × 10-300) in both the Knight ADRC cohort 
(Fig. 2C; Supplementary Fig. 7 A) and ADNI cohort (Fig. 2C, Supple
mentary Fig. 7B). We found similar strong correlation between results 
from the joint Z-scores based GWAS and meta-analysis of individual 
summary statistics using log transformed imaging endophenotype as 
variable of interest (Supplementary Fig. 8). The overall correlation be
tween effect size and p-value for this analysis were 0.98 (p < 1 × 10-300, 
Supplementary Fig. 8) and 0.94 (p < 1 × 10-300, Supplementary Fig. 8) 

respectively. 
To summarize, we observed a very strong and significant correlation 

between joint analysis using Z-scores as phenotype and meta-analysis of 
individual cohort summary statistics in both CSF and amyloid imaging 
biomarkers. Similar strong correlation was observed when the results 
from the Z-scores based analysis were compared to results from raw and 
log transformed amyloid imaging data. These results suggest that the 
transformation of raw values into a uniform Z-score based scale does not 
alter the inherent properties of the raw data, thereby making it an ideal 
framework for within- and across-cohort data harmonization. Our re
sults also show that using Z-scores as phenotype produces comparable 
results to log transforming raw endophenotypes. However, since Z- 
scores based analysis can be performed in a single step by the virtue of 
uniform variance as a result of the standardization, compared to the two- 
stage analysis required if using only log transformed values, it becomes 
an ideal choice when diverse, large-scale data needs to be analyzed. 

3.3. Z-score based dichotomization identifies robust biomarker positivity 
cut-offs 

Next, we utilized a GMM based data driven approach using Z-scores 
to determine biomarker positivity cut-offs without the need of addi
tional information such as amyloid imaging status information and 
compared the calculated cut-off values with that reported previously for 
those specific platforms and/or cohort (Shaw et al., 2009; Blennow 
et al., 2019; Fagan et al., 2009a; Chen et al., n.d.; Fagan et al., 2009b; 
Royse et al., 2021). The assumed biomarker positivity distribution from 
GMM model is presented in Fig. 3. Cut-offs were calculated from both 
cross-sectional as well as longitudinal data points based on availability. 
The data-driven cut-off were in agreement with biomarker positivity 

Fig. 2. Schematic presentation of Z-score based GWAS result validation process and results. (A)Workflow for joint and meta-analysis GWAS. (B)Correlation between 
the log10 (effect size) from Z-score based joint GWAS and meta-analysis of individual cohort GWAS for CSF Aβ (r = 0.969, p < 1 × 10-300), Tau (r = 0.966, p < 1 ×
10-300) and pTau (r = 0.958, p < 1 × 10-300) (C) Correlation between the log10 (effect size) from Z-score based and raw centiloid values based GWAS for ADNI (r =
0.966, p < 1 × 10-300) and Knight ADRC (r = 0.951, p < 1 × 10-300). 
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thresholds reported in the literature (Table 1). For example, in case of 
the ADNI xMAP CSF Aβ level (N = 1244), the data-driven method led to 
a cut-off of 196 pg/ml, which closely matches with the reported cutoff of 
192 pg/ml (Shaw et al., 2009). When the analysis was extended to 
include longitudinal data points (N = 2163), we observed that the cutoff 

remained consistent with 197 pg/ml being detected as the dichotomi
zation value. In case of CSF pTau biomarker from the Elecsys pTau in 
ADNI (N = 745), our method led to a cut-off of 27.8 pg/ml which is even 
closer to the one previously reported (27 pg/ml) (Blennow et al., 2019). 
The platform (Innotest) used for measuring CSF Aβ was different in the 
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Fig. 3. Density plot showing the assumed normal distribution by Z-scores based GMM approach in ADNI (A) and Knight ADRC (B) data using CSF biomarkers and 
Centiloid data from PET imaging. X-axis shows the Z-scores values in the dataset. A+/A- and T+/T- denotes biomarker positivity or negativity status. Green bins 
represent samples assigned biomarker negative (Amyloid/pTau negative) status and bins colored purple represents samples assigned biomarker positive (Amyloid 
/pTau positive) status. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
The Z-score cutoff and their corresponding raw values determined using Gaussian Mixture Model approach.  

Cohort Modality Biomarker Platform/Tracer Z-score threshold Raw value threshold Reported Raw value threshold 

ADNI 
CSF 

(pg/ml) 

Aβ 
(Cross-sectional) xMAP 0.60 196 192 (Shaw et al., 2009) 

Aβ 
(Longitudinal) xMAP 0.57 197 192 (Shaw et al., 2009) 

pTau Elecsys 0.197 27.8 27 (Blennow et al., 2019) 
PET imaging Aβ Centiloid 0.43 48.93 20 (Royse et al., 2021) 

Knight ADRC 

CSF 
(pg/ml) 

Aβ Innotest -0.33 527 500 (Fagan et al., 2009a) 
pTau 

(Cross-sectional) Lumipulse 0.73 58.9 58.1 (Chen et al., n.d.) 

pTau 
(Longitudinal) Lumipulse 0.70 58.4 58.1 (Chen et al., n.d.) 

PET imaging 
Aβ PiB -0.29 0.12 0.18 (Fagan et al., 2009b) 
Aβ Centiloid 0.55 33.01 21.6 (Chen et al., n.d.)  
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Knight ADRC cohort (N = 1044) but the estimated cutoff (527 pg/ml) 
was fairly close to the literature-derived threshold (500 pg/ml) for this 
platform (Fagan et al., 2009a). Similarly, for pTau we found a cut-off of 
58.9 pg/ml when using cross-sectional data points (N = 1178) and 58.4 
pg/ml with longitudinal data points (N = 1961) in comparison to 58.1 
pg/ml previously reported for the platform (Chen et al., n.d.). We also 
applied the same approach for dichotomizing the amyloid imaging data 
from different tracers and cohorts and obtained similar results (Fig. 3; 
Supplementary Fig. 9). For example, in case of Knight ADRC cohort, the 
amyloid imaging data was obtained using two different tracers (PiB [N 
= 332] and Centiloid [N = 494]) but harmonized by the same Z-score 
based approach. As expected, we observed different amyloid positivity 
cutoff for PiB (0.12) and Centiloid (33.01), that were in close proximity 
to what has been previously reported for both these tracers (0.18 and 
21.6 respectively) (Fagan et al., 2009b; Royse et al., 2021). Overall, the 
Z-score based empirical cutoff values determined using this mixture 
model approach showed good agreement with previously reported 
cutoffs, further validating the practicality of the introduced data 
harmonization technique. 

Next, we wanted to determine if this method would also lead to 
comparable ATN classification as reported by other approaches. To this 
end, we first compared the consistency of biomarker status identified by 
the mixture modelling in ADNI cohort with those obtained by applying 
previously reported cutoffs for the biomarkers for the cohort (Table 2). 
Of the 745 samples with both Aβ42 and pTau levels, 721 samples were 
assigned same biomarker status by both approaches resulting in an 
agreement of 96.78% (Table 2). This high concordance between our 
approach and classical cut-offs provides evidence that the data driven 
approach can detect reasonable cut-offs for biomarker dichotomization. 
To further evaluate the performance of our approach, we then utilized 
CSF biomarker data with known ATN classification of 629 samples, and 
performed GMM based AT classification for the samples using Z-scores. 
The previous labels were assigned based on dichotomization cut-offs 
determined through a Youden's J index maximization approach (Orel
lana et al., 2022). Our approach determined the Aβ and pTau raw value 
cutoffs to be 856 pg/ml and 67 pg/ml respectively for this dataset. Two 
groups with assumed normal distribution were identified by the mixture 
model using Aβ and pTau individually (Supplementary Fig. 10). Using 
these cutoffs, 219 samples were classified as A- and 412 were labeled as 
A+. Using pTau cutoffs, 303 samples were assigned to T- status and the 
remaining 327 were assigned to T+ status. When compared to the pre
viously assigned ATN class for these samples, we found a moderate 
agreement between both approaches with 86.49% of the total samples 
being assigned same label by both (Table 3). The previously assigned 
classification did not account for intermediate category like A+/T- or 
A-/T+. Only 52 (8.27%) samples that were previously assigned as A- 
were assigned A+ by our approach and 33 (5.25%) samples assigned as 
T+ previously were assigned as T-. More importantly, no sample origi
nally classified as A+/T+ were classified as A-/T-, or vice versa. Overall, 
the concordance observed in both analyses further provides evidence in 
support of using data driven approaches for dichotomization like the one 
we have presented here. 

4. Discussion 

CSF Aβ, Tau and pTau as well as amyloid imaging are among the 
most established biomarkers in AD research (Klunk et al., 2004; Blen
now et al., 2010). These have been used in many studies, and are the 
basis for the current ATN framework which defines the individual's 
disease status based on the objective biomarker levels rather than sub
jective clinical diagnosis scale (Jack et al., 2016). The field of biomarker 
discovery and study is experiencing exponential growth with more and 
more proteins being proposed as biomarkers. CSF or plasma neurogranin 
has been proposed as a cognitive biomarker in CSF and blood exosomes 
for AD (Liu et al., 2020). NFL reflects neuronal death and is one of the 
promising blood biomarkers for AD and neurodegeneration in general 
(Mattsson et al., 2017). CSF and plasma GFAP are biomarker for astro
glial pathology in neurological diseases (Ishiki et al., 2016; Chatterjee 
et al., 2021) and CSF TREM2 is a biomarker for microglia activation 
(Deming et al., 2019; Heslegrave et al., 2016). 

Even though more researchers are opting for CSF and PET imaging- 
based biomarker study, their potential has been stifled by the low 
sample availability owing to the invasive nature of the CSF sample 
collection via lumbar puncture and the high cost of the PET imaging. 
Availability of multiple platforms for biomarker measurement such as 
Luminex, Elecsys, Innotest and multitude of radiotracers such as 11C- 
labeled Pittsburgh compound B and 18F-florbetapir have resulted in 
heterogenous data that cannot be reliably combined. Even when the 
same platform is used, the absolute raw biomarker values may still be 
significantly different between studies because of the differences in 
sample collection and handling techniques due to lack of a universally 
accepted protocol. Although plasma biomarkers are emerging, the issues 
of data heterogeneity that have plagued the field of CSF biomarker and 
imaging are bound to be perpetuated further with the availability of 
platforms like C2N (Schindler et al., 2019; Kirmess et al., 2021), Simoa 
(Bayoumy et al., 2021) and MSD (Nakamura et al., 2018; Thijssen et al., 
2020) among others. For this reason, it is necessary to identify harmo
nization protocols that allow researchers to combine data across studies 
and identify individuals that are biomarker positive in an unbiased and 
consistent manner. 

Here, we presented standardized scores as a potential measure for 
data harmonization. Z-scores are easy to implement and interpret 
without involving any taxing statistical methodologies and allows re
searchers to combine biomarker data from different distribution. This is 
possible because standardizing the values to the mean removes effects 
introduced by external sources such as different measurement unit or 
techniques among others. The possibility of combining heterozygous 
data from diverse settings is of particular importance in case of CSF 
biomarker research where limited sample size is a consistent challenge 
(Charidimou et al., 2018; Badji et al., 2022). Z-scores can also be used in 
case of longitudinal data thereby making them scalable in nature. 

We then demonstrated that these scores can be applied across mul
tiple cohorts and can be used for joint analyses in genetic studies as an 
alternative to meta-analysis without leading to any spurious results. We 
utilized data from 23 neurodegenerative disease specific cohorts to 
highlight that joint analysis is comparable to meta-analysis of individual 
study results. However, joint analysis of standardized values has an edge 

Table 2 
Table showing the comparison between AT classification using GMM and using 
previously reported cut-offs in ADNI cohort.    

Reported Cut-offs assigned AT class 

A-T- A-T+ A + T- A + T+

GMM assigned AT class A-T- 224 2 0 0 
A-T+ 0 25 0 0 

A + T- 5 0 188 16 
A + T+ 0 1 0 284 

N = 745; “A” represents Aβ status; “T” represents pTau status; “+” symbol de
notes a biomarker positivity status; “-” denotes biomarker negative status. 

Table 3 
Table showing the comparison between AT classification using GMM and pre
viously determined classification in an external validation cohort.    

Previously assigned AT class 

A-T- A + T+

GMM assigned AT class 
A-T- 218 0 

A + T- 52 33 
A + T+ 0 326 

N = 629; “A” represents Aβ status; “T” represents pTau status; “+” symbol de
notes a biomarker positivity status; “-” denotes biomarker negative status. 

J. Timsina et al.                                                                                                                                                                                                                                 



Neurobiology of Disease 190 (2024) 106373

8

over meta analyzing independent results from each cohort due to several 
advantages. First, joint analysis provides more statistical power for 
detection of rare variants which may not be detected in individual 
cohort GWAS. Next, joint analysis allows us to implement more flexible 
study designs such as sex or disease status stratified analysis in a 
streamlined manner. By comparing the GWAS summary statistics of 
imaging data from ADNI and Knight ADRC cohort, we have also shown 
that these standardized values lead to the same results as raw endo
phenotypes based analysis. We have successfully used the same 
approach in multiple studies before (Cruchaga et al., 2013; Deming 
et al., 2017; Ali et al., 2023; Ali et al., 2022). Deming et al. (2017) used z- 
scores to harmonize phenotype data from nine different centers and 
were able to replicate expected APOE locus in their AD genome wide 
study in addition to identifying new loci. The replication of APOE region 
provides evidence to support the assumption that z-scores are able to 
conserve the biological characteristics of the underlying raw biomarker 
levels. Ali et al. (2022) replicated previously reported association of 
variants in Klotho gene region and AD through a Z-score based GWAS 
using PET imaging or CSF biomarker data from 17 different cohorts. 
Similarly, Ali et al. (2023) used Z-scores to harmonize the largest am
yloid imaging data to date and identified five novel signals associated 
with brain amyloidosis. Taken together, the Z-score transformation 
provides an ideal framework for normalizing the within- and across- 
cohort variation in the raw endophenotypic data without masking its 
inherent biological characteristics. One may argue the some of the 
positive attributes of Z-scores highlighted here are shared with the log- 
transformation performed prior to the standardization, but the unifor
mity of variance across dissimilar dataset that allows for the use of the 
diverse biomarker data as a continuous trait is inherent to Z-score and 
cannot be achieved through log normalization in itself. Although the 
GWAS results presented here are from non-Hispanic white population, 
we have previously performed similar comparisons in multi-ethnic 
amyloid imaging GWAS and observed similar high concordance be
tween both methods (Ali et al., 2023). Additional validation will be 
needed as more samples from diverse ethnicity become available and 
will require race/ethnicity specific z-score calculation and subsequent 
analysis. 

We have also extended the use of standardized scores to identify the 
cut-off point that defines biomarker positive from negative using a GMM 
approach. Here we demonstrate that using this approach leads to very 
similar cut-off values to those reported using more classical approaches 
(Table 1). This can be leveraged to perform the ATN classification at 
individual level, which leads to very consistent and replicable results, as 
shown by our analysis comparing the ATN labels assigned by the method 
with previously identified labels in an external cohort. Current ATN 
classification approaches are calculated per dataset and are based on 
comparing a specific biomarker, such as CSF Aβ, with a different stan
dard (for example amyloid imaging) to identify the cut-off for biomarker 
positivity. This approach requires to have multiple comparable bio
markers for the same individual and in a large number of samples which 
make these analyses more complicated. Data driven approaches such as 
the one presented here could be an alternative approach to identify the 
cut-off point to define biomarker positivity without the need of addi
tional markers. The real value of this approach is in use cases where we 
do not have any information on the platform used for biomarker mea
surement, when tested in a new population, when a new assay or plat
form is being used or to determine gender or race specific cut-off. 
Several studies have previously reported difference in biomarker levels 
between these population subgroups (Koran et al., 2017; Schindler et al., 
2022), therefore this approach can be easily implemented without the 
need to have access to additional data. 

Despite these demonstrated strengths, there are some limitations to 
this method. One potential critique of this method is that by using 
standardized values, the mean of the distribution becomes or approxi
mates 0 which is not informative and does not correspond to any bio
logical value or biomarker cut-off. The mean of any marker distribution 

is a property of the cohort and is representative of the cohort charac
teristics. For example, in a cohort enriched for AD cases compared to 
controls, the average CSF Aβ will shift to the left in comparison to the 
cut-off for biomarker positive and in a cohort with more controls the 
mean will be shift to the right. As such, by setting the mean to be 0 we 
are losing this biological information thereby providing credibility to 
the argument. However, this can be addressed by combining the stan
dardized values with the dichotomization approach presented here. 
First, the raw biomarker values and standardized values can be calcu
lated as shown here. This gives a distribution with a mean of 0 and 
standard deviation of 1. However, in contrast to other methods, such as 
rank based scores, this method preserves the overall distribution of 
protein levels. Second the cut off for biomarker positivity is calculated 
using the same GMM approach as presented here. As shown by our re
sults here, this data-driven method does not require any other infor
mation to identify the cut-off and is highly replicable. Third, once the 
cut-off is calculated, new values can be re-calculated by centering the 
raw values using the cut-off. In this way, for all the different studies and 
biomarkers, 0 will be always the point of separation between biomarker 
positive and negative individuals. Finally, as all datasets will have 
similar standard deviation and are centered around the cutoff, the value 
for each individual will be highly informative as it will inform whether 
the value corresponds to biomarkers positive and negative status, and 
how far from the cut off or how extreme it is even though these values do 
not correspond to any absolute values in protein levels and cannot be 
represented in pg/ml or any other scale. This has the advantage that 
there will not be a need to have specific cut off values for each assay. 
However, since the resulting distribution is not Z-score distribution, the 
biological feature and utility of the new distribution as a proxy will need 
further evaluation using similar approaches as presented in this paper 
for Z-score distribution. Another limitation of this method is that in 
order to identify a reliable cut-off, we need a sample size of at least 200 
individuals with a relatively good balance of both cases and controls. 
However, as more and more biomarker and imaging data becomes 
available, we foresee that this would not be a limitation in near future. 
Finally, in this study, we included several very well characterized co
horts focused on Alzheimer's disease. Their biomarker cut-offs are 
determined after individuals with clear clinical presentation for other 
neurodegenerative diseases were excluded. However, clinical hetero
geneity can affect the analyses for any biomarker, including AUCs, 
sensitivity, specificity, and subsequently the identification of the cut-off. 
Particularly when individuals with similar disease-pathology are 
included in the analyses, the biomarker cut-off determination approach 
can be affected. For example, if individuals with non-AD diagnosis but 
with amyloidosis are included, the cut-off for case control stratification 
will be affected. Therefore, clinical heterogeneity can affect biomarker 
cut-off determination using both classical approaches as well as the 
method proposed here. 

Currently there is an effort to perform harmonization of multiple 
endophenotypes (cognition, raw imaging, neuropathology, CSF bio
markers) for individuals included in the ADSP study and We are 
harmonizing the CSF biomarkers using the standardized values as well 
as the performing ATN classification for all cohorts with available bio
markers data. We are depositing our results in NIAGADS (Alzheimer's 
Disease Sequencing Project Phenotype Harmonization Consortium 
(ADSP-PHC) – ADSP (niagads.org) as part of the U24 harmonization 
consortium. We are currently implementing the additional harmoniza
tion as described here, and expect to release the data in near future. 

5. Conclusion 

In conclusion, to address the need of data harmonization in the field 
of CSF biomarker and amyloid imaging field, we presented a Z-score- 
based approach. Not only does this method allows the combination of 
data from dissimilar platforms and studies, but also preserves the 
characteristics of underlying raw data and produces comparable results 
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in genetic studies. In addition, when used in combination with mixed 
modelling approach, they are helpful in identifying biologically relevant 
cutoffs for distinguishing biomarker positive and negative individuals 
that are close to reported cutoffs currently being used. Overall, Z-score 
based method can be a powerful solution for data harmonization. 
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